V series Piston Pump

Features
- **Low noise**
 - Low noise operation over the entire pressure range has been realized in each series.
- **High efficiency**
 - Fluid temperature rise can be reduced due to the smaller power loss. This means that the tank can be designed in a small size.
- **High reliability**
 - High responsivity, high stability, and long life make it possible to increase the reliability of the main machine.

Nomenclature

- **Pressure compensator control**
 \[
 \begin{array}{cccccccc}
 \text{A} & \text{V} & \text{C} & \text{I} & \text{R} & \text{T} & \text{SA} & \\
 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
 \end{array}
 \]

- **Combination control (pressure feedback method)**
 \[
 \begin{array}{cccccccc}
 \text{C} & \text{V} & \text{R} & \text{H} & \text{S} & \text{H} & \text{S} & \\
 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
 \end{array}
 \]

- **Combination control (solenoid operated method)**
 \[
 \begin{array}{cccccccc}
 \text{C} & \text{V} & \text{R} & \text{J} & \text{X} & \text{H} & \text{X} & \\
 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
 \end{array}
 \]

- **Dual pressure control**
 \[
 \begin{array}{cccccccc}
 \text{D} & \text{V} & \text{R} & \text{X} & \text{H} & \text{X} & \text{S} & \\
 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
 \end{array}
 \]

- **Power-match control**
 \[
 \begin{array}{cccccccc}
 \text{SA} & \text{V} & \text{R} & \text{X} & \text{H} & \text{X} & \text{S} & \\
 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
 \end{array}
 \]

Applicable fluid code (Refer to Page A-5 for the applicable models and conditions of use)
- No designation: Petroleum-based hydraulic fluid
- W: Water-glycol hydraulic fluid
- F: Phosphate ester hydraulic fluid

Model No.
- V: V series piston pump

Pump capacity
- 8: 8.0 cm³/rev
- 15: 14.8 cm³/rev
- 23: 23.0 cm³/rev
- 38: 37.7 cm³/rev
- 50: 51.6 cm³/rev
- 70: 69.8 cm³/rev

Control method I (Refer to Page A-4 for the applicable models)
- A: Pressure compensator control
- C: Combination control
- D: Dual pressure control
- SA: Power-match control

Pressure adjustment range

- Low pressure adjustment range
- High pressure adjustment range

FC valve differential pressure
- A: 0.7 MPa \{ 7 kgf/cm² \}
- B: 1.4 MPa \{ 14 kgf/cm² \}
- C: 2.1 MPa \{ 21 kgf/cm² \}

Direction of rotation, when viewed from the shaft end (Refer to Page A-4 for the applicable models)
- R: Clockwise (rightward)
- L: Counterclockwise (leftward)

Control method II
- H: Pressure feedback method
- J: Solenoid operated method

Voltage code for the solenoid valve
- A: AC 100 V (50/60 Hz), AC 110 V (60 Hz)
- B: AC 200 V (50/60 Hz), AC 220 V (60 Hz)
- N: DC 12 V
- P: DC 24 V

Piping direction (Refer to Page A-4 for the applicable models)
- No designation: Axial port
- X: Side port

Design No. (The design No. is subject to change)
- 20: Pump model V8, V50
- 95: Pump model V15, V38
- 30: Pump model V23
- 60: Pump model V70

Control method III
- No designation: Without remote control system
- RC: With remote control system

Note: Refer to Page A-68 for information on forward/backward compatibility.

Refer to Page N-2 for hydraulic unit piston packs incorporating V series piston pumps, Page N-17 for NDJ series new DAIPACKs, Page N-22 for ND series Mini-packs, Page N-27 for ND series new DAIPACKs, and Page N-30 for the NT series SSS MARK-II.
Models and pressure adjustment range table

Pressure compensator control (A = A)

<table>
<thead>
<tr>
<th>Code</th>
<th>Pressure adjustment range (MPa)</th>
<th>Without remote control system</th>
<th>With remote control system</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V8</td>
<td>V15</td>
</tr>
<tr>
<td>1</td>
<td>0.8 to 7 (8 to 70)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>1</td>
<td>1.5 to 7 (15 to 70)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>1.5 to 14 (15 to 140)</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>1.5 to 21 (15 to 210)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>2 to 21 (20 to 210)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>3.5 to 21 (35 to 210)</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>1.5 to 25 (15 to 250)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>3.5 to 25 (35 to 250)</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Combination control (A = C, H = self-regulation method or J = solenoid operated method)

<table>
<thead>
<tr>
<th>Code</th>
<th>Pressure adjustment range (MPa)</th>
<th>Pressure feedback method</th>
<th>Solenoid operated method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V15</td>
<td>V23</td>
</tr>
<tr>
<td>1</td>
<td>1.5 to 7 (15 to 70)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1</td>
<td>2.5 to 7 (25 to 70)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>1.5 to 14 (15 to 140)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>2.5 to 14 (25 to 140)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>2.0 to 21 (20 to 210)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>2.5 to 21 (25 to 210)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>3.5 to 21 (35 to 210)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>2.5 to 20 (25 to 250)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>2.5 to 25 (25 to 250)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>3.5 to 25 (35 to 250)</td>
<td>–</td>
<td>✓</td>
</tr>
</tbody>
</table>

Dual pressure control (A = D)

<table>
<thead>
<tr>
<th>Code</th>
<th>Pressure adjustment range (MPa)</th>
<th>V15</th>
<th>V23</th>
<th>V38</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5 to 7 (15 to 70)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>1.5 to 14 (15 to 140)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Power-match control (A = SA)

<table>
<thead>
<tr>
<th>Code</th>
<th>Pressure adjustment range (MPa)</th>
<th>V15</th>
<th>V23</th>
<th>V38</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8 to 7 (8 to 70)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>1</td>
<td>1.5 to 7 (15 to 70)</td>
<td>–</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>1.5 to 14 (15 to 140)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>3.5 to 21 (35 to 210)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>3.5 to 25 (35 to 250)</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Nomenclature

- V 15 A 1 R Y - 95

1 Applicable fluid code
 - No designation: Petroleum-based hydraulic fluid
 - W: Water-glycol hydraulic fluid
 - F: Phosphate ester hydraulic fluid

2 Model No.
 - V: V series piston pump

3 Pump capacity
 - 15: 14.8 cm³/rev

4 Control method
 - A: Pressure compensator control

5 Pressure adjustment range
 - 1: 0.8 to 7 MPa {8 to 70 kgf/cm²}
 - 2: 4.5 to 26.6
 - 3: 0.8 to 7
 - 4: 12 to 41.4
 - 5: 34 to 68
 - 6: 13 to 126
 - 7: 30 to 95
 - 8: 60 to 70

6 Direction of rotation, when viewed from the shaft end (Refer to Page A-4 for the applicable models)
 - R: Clockwise (rightward)
 - L: Counterclockwise (leftward)

7 Piping direction
 - X: Side port

8 Design number
 - (The design number is subject to change)
 - 30: Pump model V23
 - 95: Pump model V38
 - 20: Pump model V50
 - 60: Pump model V70

Specifications

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Theoretical discharge rate cm³/rev</th>
<th>Maximum operating pressure MPa (kgf/cm²)</th>
<th>Permissible rotational speed min⁻¹</th>
<th>Discharge rate adjustment range 1800 min⁻¹ L/min</th>
<th>Mass (Control method A) kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Axial port</td>
<td>Side port</td>
</tr>
<tr>
<td>V8</td>
<td>8.0</td>
<td>7 (70)</td>
<td>500 to 1800</td>
<td>2</td>
<td>14.4</td>
</tr>
<tr>
<td>V15</td>
<td>14.8</td>
<td>21 (210)</td>
<td>500 to 1800</td>
<td>4.5</td>
<td>26.6</td>
</tr>
<tr>
<td>V15 (Type Y)</td>
<td>14.8</td>
<td>7 (70)</td>
<td>500 to 1800</td>
<td>4.5</td>
<td>26.6</td>
</tr>
<tr>
<td>V23</td>
<td>23.0</td>
<td>25 (250)</td>
<td>500 to 1800</td>
<td>12</td>
<td>41.4</td>
</tr>
<tr>
<td>V38</td>
<td>37.7</td>
<td>25 (250)</td>
<td>500 to 1800</td>
<td>34</td>
<td>68</td>
</tr>
<tr>
<td>V50</td>
<td>51.6</td>
<td>21 (210)</td>
<td>500 to 1800</td>
<td>0</td>
<td>93</td>
</tr>
<tr>
<td>V70</td>
<td>69.8</td>
<td>21 (210)</td>
<td>500 to 1800</td>
<td>13</td>
<td>126</td>
</tr>
</tbody>
</table>

Note:
- JR-G (T) 02 and JRP-G02 are recommended for the remote control system's relief valve.
- If the vent port is blocked, the pressure compensation structure does not work and the pump operates at a fixed pressure.

- Foot supports and piping flanges are not provided with the pump. Order them separately as required by referring to Pages S-2 and S-4.
Relationship between number of revolutions of the pressure adjusting screw and variation of discharge pressure

- The discharge pressure can be set to the desired value by turning the pressure adjusting screw of the PC valve.
 - Turning the adjusting screw clockwise increases the pressure.
 - Turning the adjusting screw counterclockwise decreases the pressure.

![Diagram showing the relationship between number of revolutions of the pressure adjusting screw and variation of discharge pressure]

* The 4th pattern applies to V23 and V38.

- Excessive loosening of the pressure adjusting screw may cause oil to leak from the threaded section or parts to spring out. Do not loosen the screw beyond the pressure adjustment range.
- The 1st to 4th patterns correspond to the pressure adjustment range designation codes 1 to 4.
Relationship between the protruding length of the discharge rate adjusting screw and the discharge rate \((4 = A, D, SA)\)

- The maximum discharge rate can be set to the desired value by turning the discharge rate adjusting screw at the end cap.
 - Turning the adjusting screw clockwise decreases the discharge rate.
 - Turning the adjusting screw counterclockwise increases the discharge rate.

- The discharge rate can be roughly judged from the protruding length of the discharge rate adjusting screw \((L)\).

 \[\text{Discharge rate adjusting screw}\]

 \[\text{End cap}\]

 \[\text{Cylinder rod}\]

 \[\text{Control cylinder}\]

 \[\text{Swash plate}\]

 \[\text{Discharge rate adjusting screw}\]

 \[\text{Socket for hex key}: 3 \text{ (V8)}\]
 \[5 \text{ (V15, V23, V38)}\]
 \[6 \text{ (V50, V70)}\]

 \[\text{Hexagonal flat nut}: 10 \text{ (V8)}\]
 \[17 \text{ (V15, V23, V38)}\]
 \[19 \text{ (V50, V70)}\]

\[\text{Overtightening of the discharge rate adjusting screw may cause oil to leak from the threaded section. Do not tighten the screw beyond the adjustment range.}\]
Relationship between the protruding length of the discharge rate adjusting screw and the discharge rate (4=C)

Discharge rate adjustment in combination control

The discharge rate for both the low quantity (QL) and high quantity (QH) ranges can be adjusted as follows:

- Turning the adjusting screw clockwise decreases the discharge rate.
- Turning the adjusting screw counterclockwise increases the discharge rate.

The discharge rate adjusting screws are provided with scales on the nameplates as shown below.

<table>
<thead>
<tr>
<th>Pump model</th>
<th>Scale °</th>
</tr>
</thead>
<tbody>
<tr>
<td>V15C</td>
<td>0 to 7</td>
</tr>
<tr>
<td>V23C</td>
<td>0 to 9</td>
</tr>
<tr>
<td>V38C</td>
<td>0 to 9</td>
</tr>
<tr>
<td>V70C</td>
<td>0 to 9</td>
</tr>
</tbody>
</table>

(Scale graduation: 1°)

Adjust the discharge rate according to the relevant discharge rate adjustment graph by following the procedure below.

1. For the low quantity range, read the value for the desired discharge rate on the graph and turn the low quantity adjusting screw to set the scale position to the read value.
2. For the high quantity range, read the value for the desired discharge rate on the line corresponding to the value for the low quantity range on the graph and turn the high quantity adjusting screw to set the scale position to the read value.
3. When adjusting only the high quantity range, loosen the lock nut and adjust as described above.
4. When adjusting only the low quantity range, loosen the lock nut on the high quantity adjustment screw and adjust the setting for the low quantity range as described above while holding the high quantity adjusting screw in place with a hex key.

Example of adjustment

Example: When adjusting the discharge rate of V15C at 1500 min⁻¹ to 7 L/min for the low quantity range (QL) and 18 L/min for the high quantity range (QH)

- From the discharge rate adjustment graph for V15C at 1500 min⁻¹, first read the value for QL = 7 L/min, which is 4, and adjust the low quantity adjusting screw accordingly.
- Then, read the value for QH = 18 L/min on the line for 4 of QL, which is 7, and adjust the high quantity adjusting screw accordingly.

The setting values indicated above may change slightly depending on the conditions of use (fluid temperature, hydraulic fluid type, etc.)

For final fine adjustment, repeat the adjustment described above and achieve the setting appropriate for the actual application.

Factory settings

The discharge rate for the high quantity range is factory adjusted to the maximum discharge rate and the discharge rate for the low quantity range is generally factory adjusted as follows.

<table>
<thead>
<tr>
<th>Pump model</th>
<th>Low quantity (QL) setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>V15C</td>
<td>Scale position: 6°</td>
</tr>
<tr>
<td>V23C</td>
<td>Scale position: 8°</td>
</tr>
<tr>
<td>V38C</td>
<td>Scale position: 7°</td>
</tr>
<tr>
<td>V70C</td>
<td>Scale position: 7°</td>
</tr>
</tbody>
</table>

Note: The high quantity adjustment range may be restricted due to the setting for the low quantity range. See the graphs on Page A-15 for details.
Before using the product, please check the guide pages at the front of this catalog.

http://www.daikinpmc.com/en/
For latest information, PDF catalogs and operation manuals

V15C combination control (1800 min⁻¹)

V15C combination control (1500 min⁻¹)

V23C combination control (1800 min⁻¹)

V23C combination control (1500 min⁻¹)

V38C combination control (1800 min⁻¹)

V38C combination control (1500 min⁻¹)

V70C combination control (1800 min⁻¹)

V70C combination control (1500 min⁻¹)
Before using the product, please check the guide pages at the front of this catalog.

http://www.daikinpmc.com/en/

For latest information, PDF catalogs and operation manuals

Pressure compensator characteristics

- **Sharp cutoff characteristics**
 - The pressure gradient at cutoff is no greater than 0.5 MPa (5 kgf/cm²).
 - Sharp and stable cutoff characteristics are achieved.

<table>
<thead>
<tr>
<th>Model</th>
<th>Response time sec.</th>
<th>Surge pressure MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₁</td>
<td>t₂</td>
<td>Ps</td>
</tr>
<tr>
<td>V8</td>
<td>0.04 to 0.05</td>
<td>0.05 to 0.07</td>
</tr>
<tr>
<td>V15</td>
<td>0.04 to 0.05</td>
<td>0.05 to 0.07</td>
</tr>
<tr>
<td>V23</td>
<td>0.05 to 0.06</td>
<td>0.05 to 0.07</td>
</tr>
<tr>
<td>V38</td>
<td>0.05 to 0.09</td>
<td>0.05 to 0.07</td>
</tr>
<tr>
<td>V50</td>
<td>0.06 to 0.09</td>
<td>0.06 to 0.09</td>
</tr>
<tr>
<td>V70</td>
<td>0.06 to 0.09</td>
<td>0.06 to 0.09</td>
</tr>
</tbody>
</table>

Response characteristics

Noise characteristics (JIS B 8350, measuring position: 1 m from pump front)

<table>
<thead>
<tr>
<th>Input rotational speed</th>
<th>Fluid used</th>
<th>Oil temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800 min⁻¹ 1500 min⁻¹</td>
<td>Equivalent to ISO VG32</td>
<td>50°C</td>
</tr>
</tbody>
</table>

* At full-cutoff at 1800 min⁻¹
 * At full-cutoff at 1500 min⁻¹

[Diagram of pressure compensator characteristics]

[Diagram of response characteristics]

[V8, V15, V23, V38, V50, V70 noise level graphs]

A-16
Note: The efficiency varies depending on the discharge rate setting. When selecting the motor capacity, refer to the shaft input characteristics on Page A-19.
Shaft input characteristics at full cutoff
Common to 1800 min\(^{-1}\) and 1500 min\(^{-1}\) Fluid used: ISO VG32, Fluid Temperature: 50°C
Shaft input characteristics
Common to 1800 min⁻¹ and 1500 min⁻¹ Fluid used: ISO VG32, Fluid Temperature: 50°C

Drainage volume characteristics
Common to 1800 min⁻¹ and 1500 min⁻¹ Fluid used: ISO VG32, Fluid Temperature: 50°C
External dimension diagram

V8A1RX-20

- Discharge port Rc\(^{3/4}\)
- Drain port Rc\(^{3/4}\)
- Pressure adjusting screw (clockwise: pressure increase)
 - Socket for hex key: 6.5
 - Hexagonal flat lock nut: 27
- Oil filler port for the pump case
- Mass: 8.9 kg

Contact Details
Before using the product, please check the guide pages at the front of this catalog.

http://www.daikinpmc.com/en/
For latest information, PDF catalogs and operation manuals
External dimension diagram

V15A×RX-95

Discharge rate adjusting screw (clockwise: discharge rate decrease)
Socket for hex key: 5
Hexagonal flat lock nut: 17

Oil filler port for the pump case

V15A×R-95

Discharge rate adjusting screw (clockwise: discharge rate decrease)
Socket for hex key: 5
Hexagonal flat lock nut: 17

V15A×RX-95RC

Discharge rate adjusting screw (clockwise: discharge rate decrease)
Socket for hex key: 5
Hexagonal flat lock nut: 17
Oil filler port for the pump case

PC remote control valve
Contact Details

Before using the product, please check the guide pages at the front of this catalog.

http://www.daikinpmc.com/en/

For latest information, PDF catalogs and operation manuals

External Dimension Diagram

V15A3R-95RC

- **Discharge rate adjusting screw (clockwise: discharge rate decrease)**
- **Socket for hex key: 5**
- **Hexagonal flat lock nut: 17**
- **Oil filler port for the pump case**

V15C×RHX-95

- **Oil filler port for the pump case**
- **Combination control valve**
- **Discharge rate adjusting screw**
- **Socket for hex key: 6.5**
- **Hexagonal flat lock nut: 27**

V15C×3RHX-95RC

- **Oil filler port for the pump case**
- **Combination control valve**
- **Discharge rate adjusting screw**
- **Socket for hex key: 6.5**
- **Hexagonal flat lock nut: 27**

<table>
<thead>
<tr>
<th>Model</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>V15A3R-95RC</td>
<td>14.3 kg</td>
</tr>
<tr>
<td>V15C×RHX-95</td>
<td>17.6 kg</td>
</tr>
<tr>
<td>V15C×3RHX-95RC</td>
<td>18.4 kg</td>
</tr>
</tbody>
</table>
Before using the product, please check the guide pages at the front of this catalog.

http://www.daikinpmc.com/en/

For latest information, PDF catalogs and operation manuals

External dimension diagram

V15C×RJ×X-95

Solenoid (KSO-G02-2B×××-C)
Discharge rate adjusting screw (low quantity)
Discharge rate adjusting screw (high quantity)

Oil filler port for the pump case

Drain port Rc⅜

Combination control valve

82 maximum

Low pressure adjusting screw (P_L)
Socket for hex key: 6.5
Hexagonal flat lock nut: 27

High pressure adjusting screw (P_H)
Socket for hex key: 6.5
Hexagonal flat lock nut: 27

Drain port Rc⅜

281 (AC), 284 (DC)

Discharge port G1
O-ring boss

Suction port G1
O-ring boss

Mass: 19.3 kg

V15C×3RJ×X-95RC

Solenoid (KSO-G02-2B×××-C)
Discharge rate adjusting screw (low quantity)
Discharge rate adjusting screw (high quantity)

Combination control valve

281 (AC), 284 (DC)

Drain port Rc⅜

Oil filler port for the pump case

Low pressure adjusting screw (P_L)
Socket for hex key: 6.5
Hexagonal flat lock nut: 27

High pressure adjusting screw (P_H)
Socket for hex key: 6.5
Hexagonal flat lock nut: 27

(factory adjusted)

Discharge port G1
O-ring boss

Suction port G1
O-ring boss

Mass: 20.1 kg

V15D×R×X-95

Solenoid (KSO-G02-2B××××-C)

Drain port Rc⅜

Dual pressure control valve

48, 44.5
18, 18
6, 6

Discharge rate adjusting screw (clockwise: discharge rate decrease)

Oil filler port for the pump case

82 maximum

Low pressure adjusting screw (P_L)
Socket for hex key: 6.5
Hexagonal flat lock nut: 27

High pressure adjusting screw (P_H)
Socket for hex key: 6.5
Hexagonal flat lock nut: 27

Discharge port G1
O-ring boss

Suction port G1
O-ring boss

Mass: 17.8 kg
External dimension diagram

V15D×3R×X-95RC

- Vent port Rc½
- Dual pressure control valve
- Drain port Rc½
- 281 (AC), 284 (DC)
- Low pressure adjusting screw (P₁)
- Socket for hex key: 6.5
- Hexagonal flat lock nut: 27
- High pressure PC differential pressure adjusting screw (P₂)
 (factory adjusted)
- Oil filler port for the pump case
- φ34.76 mm × 32

Discharge port G1
- O-ring boss
- φ20
- 205
- 147
- 117
- 144
- 170
- 61
- 56
- 88

Suction port G1
- O-ring boss
- φ20
- 170
- 144

Solenoid
(KSO-G02-2B××××××××××××)

Drain port Rc⅜
- φ82.55 mm
- φ19.05 mm

Discharge rate adjusting screw
(clockwise: discharge rate decrease)
Socket for hex key: 5
Hexagonal flat lock nut: 17
Discharge rate adjusting screw
(φ20)

Mass: 18.6 kg

V15SA××RX-95

- Power-match control valve
- Suction port G1
- O-ring boss
- φ57.2
- 170
- 144
- 170

- Drain port Rc½
- Oil filler port for the pump case
- φ34.76 mm × 32
- φ19.05 mm

- Discharge port G1
- O-ring boss
- φ20
- 205
- 147
- 117
- 144
- 170

- Load pressure port
 ⅜-20UNF-2B O-ring boss
 (with UNF-Rc½ (male) conversion nipple)
- Differential pressure setting adjusting screw (FC valve)
- Socket for hex key: 6.5
- Hexagonal flat lock nut: 27
- Maximum pressure adjusting screw (PC valve)
- Socket for hex key: 6.5
- Hexagonal flat lock nut: 27

Mass: 15.2 kg

V15SA×R-95

- Power-match control valve
- Suction port G1
- O-ring boss
- φ57.2
- 170
- 144
- 170

- Drain port Rc½
- Oil filler port for the pump case
- φ34.76 mm × 32
- φ19.05 mm

- Discharge port G1
- O-ring boss
- φ20
- 205
- 147
- 117
- 144
- 170

- Load pressure port
 ⅜-20UNF-2B O-ring boss
 (with UNF-Rc½ (male) conversion nipple)
- Differential pressure setting adjusting screw (FC valve)
- Socket for hex key: 6.5
- Hexagonal flat lock nut: 27
- Maximum pressure adjusting screw (PC valve)
- Socket for hex key: 6.5
- Hexagonal flat lock nut: 27

Mass: 13.5 kg
Contact Details
Before using the product, please check the guide pages at the front of this catalog.

http://www.daikinpmc.com/en/
For latest information, PDF catalogs and operation manuals

External dimension diagram

V15A1RY-95

Oil filler port for the pump case
Drain port A Rc⅜
Drain port B Rc⅜ (plugged)
PC valve
Pressure adjusting screw
(clockwise: pressure increase)
Socket for hex key: 6.5
Hexagonal flat lock nut: 27

Discharge rate adjusting screw
(clockwise: discharge rate decrease)
Socket for hex key: 5
Hexagonal flat lock nut: 17

Suction port φ18

4-M10, depth 20
Prepared hole depth 25

Discharge port A Rc⅜ (plugged)

Discharge port B Rc⅜ (plugged)

4.76 × 32

Pressure adjusting screw
(clockwise: pressure decrease)
Socket for hex key: 6.5

Mass: 13.5 kg

* Use SHA15 or SSA20 pipe flange (JIS B 2291) or equivalent at the suction side.
Before using the product, please check the guide pages at the front of this catalog.

For latest information, PDF catalogs and operation manuals:

http://www.daikinpmc.com/en/
External dimension diagram

V23C×RJ×X-35

<table>
<thead>
<tr>
<th>Suction port G1</th>
<th>O-ring boss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>61</td>
</tr>
<tr>
<td>Discharge port G1</td>
<td>O-ring boss</td>
</tr>
<tr>
<td></td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>184</td>
</tr>
</tbody>
</table>

- **Discharge rate adjusting screw (low quantity)**
- **Discharge rate adjusting screw (high quantity)**

Combination control valve

Low pressure adjusting screw (P_L)
- Socket for hex key: 6.5
- Hexagonal flat lock nut: 27

High pressure adjusting screw (P_H)
- Socket for hex key: 6.5
- Hexagonal flat lock nut: 27

Oil filler port for the pump case
- 82 maximum

Drain port Rc⅜

Discharge port G1

Vent port Rc⅜

Discharge port G1

Oil filler port for the pump case

Mass: 25.1 kg

V23C×4RJ×X-35RC

<table>
<thead>
<tr>
<th>Suction port G1</th>
<th>O-ring boss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>61</td>
</tr>
<tr>
<td>Discharge port G1</td>
<td>O-ring boss</td>
</tr>
<tr>
<td></td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>184</td>
</tr>
</tbody>
</table>

- **Discharge rate adjusting screw (low quantity)**
- **Discharge rate adjusting screw (high quantity)**

Combination control valve

Low pressure adjusting screw (P_L)
- Socket for hex key: 6.5
- Hexagonal flat lock nut: 27

High pressure PC differential pressure adjusting screw (P_H)
- (factory adjusted)

Oil filler port for the pump case
- 82 maximum

Drain port Rc⅜

Discharge port G1

Vent port Rc⅜

Discharge port G1

Oil filler port for the pump case

Mass: 25.1 kg

V23D×R×X-35

<table>
<thead>
<tr>
<th>Suction port G1</th>
<th>O-ring boss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>61</td>
</tr>
<tr>
<td>Discharge port G1</td>
<td>O-ring boss</td>
</tr>
<tr>
<td></td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>184</td>
</tr>
</tbody>
</table>

- **Discharge rate adjusting screw (clockwise: discharge rate decrease)**
- **Socket for hex key: 5**
- **Hexagonal flat lock nut: 17**

Combination control valve

Low pressure adjusting screw (P_L)
- Socket for hex key: 6.5
- Hexagonal flat lock nut: 27

High pressure adjusting screw (P_H)
- Socket for hex key: 6.5
- Hexagonal flat lock nut: 27

Oil filler port for the pump case
- 82 maximum

Drain port Rc⅜

Discharge port G1

Vent port Rc⅜

Discharge port G1

Mass: 24.8 kg
A-29

External dimension diagram

V23DX4RX-35RC

Solenoid KSO-G02-2B×××××C
Dual pressure control valve
Vent port Rc½

Low pressure adjusting screw (P L)
Socket for hex key: 5
Hexagonal flat lock nut: 17

High-pressure PC differential pressure adjusting screw (P H)
Socket for hex key: 6.5
Hexagonal flat lock nut: 27

Drain port Rc½
Oil filler port for the pump case

Mass: 25.6 kg

V23SA×RX-30

Load pressure port
½-20UNF-2B
O-ring boss
(with UNF-Rc¼ (male) conversion nipple)

Discharge rate adjusting screw
(clockwise: discharge rate decrease)
Socket for hex key: 5
Hexagonal flat lock nut: 17

Differential pressure setting adjusting screw (FC valve)
Socket for hex key: 6.5
Hexagonal flat lock nut: 27

Maximum pressure adjusting screw (PC valve)
Socket for hex key: 6.5
Hexagonal flat lock nut: 27
Oil filler port for the pump case

Mass: 22.2 kg

V23SA×R-30

Load pressure port
½-20UNF-2B
O-ring boss
(with UNF-Rc¼ (male) conversion nipple)

Discharge rate adjusting screw
(clockwise: discharge rate decrease)
Socket for hex key: 5
Hexagonal flat lock nut: 17

Differential pressure setting adjusting screw (FC valve)
Socket for hex key: 6.5
Hexagonal flat lock nut: 27

Mass: 19.1 kg
Before using the product, please check the guide pages at the front of this catalog.

Internet
http://www.daikinpmc.com/en/
For latest information, PDF catalogs and operation manuals

External dimension diagram

V23SAJS- ×RX-30

Mass: 25 kg
External dimension diagram

V38A×RX-95

- Suction port G1¼ O-ring boss
- PC valve
- Discharge rate adjusting screw (clockwise: discharge rate decrease)
 - Socket for hex key: 5
 - Hexagonal flat lock nut: 17
- Drain port Rc½
- PC remote control valve
- Vent port Rc¼ (with UNF-Rc¼ (male) conversion nipple)
- Oil filler port for the pump case
- Mass: 26 kg

V38A×R-95

- Suction port G1¼ O-ring boss
- PC valve
- Discharge rate adjusting screw (clockwise: discharge rate decrease)
 - Socket for hex key: 5
 - Hexagonal flat lock nut: 17
- Drain port Rc½
- PC differential pressure adjusting screw (factory adjusted)
- Oil filler port for the pump case
- Mass: 24.4 kg

V38A×RX-95RC

- Suction port G1¼ O-ring boss
- PC remote control valve
- Discharge rate adjusting screw (clockwise: discharge rate decrease)
 - Socket for hex key: 5
 - Hexagonal flat lock nut: 17
- Drain port Rc½
- PC differential pressure adjusting screw (factory adjusted)
- Oil filler port for the pump case
- Mass: 28.7 kg
External dimension diagram

V38A4R-95RC

Discharge rate adjusting screw
(Clockwise: discharge rate decrease)
Socket for hex key: 5
Hexagonal flat lock nut: 17

PC differential pressure adjusting screw
(factory adjusted)
Oil filler port for the pump case

Mass: 26 kg

V38C×4RX-95RC

Low pressure adjusting screw (P₁)
Socket for hex key: 6.5
Hexagonal flat lock nut: 27

High-pressure PC differential pressure adjusting screw (Pₚ)
(factory adjusted)

Mass: 29.8 kg

V38C×RXH-95

Suction port G1¼
O-ring boss

Combination control valve

Discharge rate adjusting screw
(low quantity)

Drain port Rc½

Discharge rate adjusting screw
(high quantity)

Mass: 26 kg
External dimension diagram

V38C××RJ×X-95

Combination control valve
Solenoid
(KSO-G02-2B×××C)
Discharge rate adjusting screw (low quantity)
Discharge rate adjusting screw (high quantity)

Discharge port G1½
O-ring boss

Low pressure adjusting screw (PL)
Socket for hex key: 6.5
Hexagonal flat lock nut: 27

High pressure adjusting screw (PH)
Socket for hex key: 6.5
Hexagonal flat lock nut: 27

Oil filler port for the pump case

Mass: 30.7 kg

V38C××RJ×X-95RC

Combination control valve
Solenoid
(KSO-G02-2B×××C)
Discharge rate adjusting screw (low quantity)
Discharge rate adjusting screw (high quantity)

Discharge port G1½
O-ring boss

Low pressure adjusting screw (PL)
Socket for hex key: 6.5
Hexagonal flat lock nut: 27

High pressure PC differential pressure adjusting screw (PH)
(factory adjusted)

Oil filler port for the pump case

Mass: 31.5 kg

V38D××R×X-95

Dual pressure control valve
Solenoid
(KSO-G02-2B×××C)
Discharge rate adjusting screw (clockwise: discharge rate decrease)
Socket for hex key: 5
Hexagonal flat lock nut: 17

Discharge port G1½
O-ring boss

Low pressure adjusting screw (PL)
Socket for hex key: 6.5
Hexagonal flat lock nut: 27

High pressure adjusting screw (PH)
Socket for hex key: 6.5
Hexagonal flat lock nut: 27

Oil filler port for the pump case

Mass: 30.5 kg

A-33
External dimension diagram

V38D×R×X-95RC

Suction port G1¼
O-ring boss

Discharge port G1¼
O-ring boss

Discharge rate adjusting screw
(clockwise: discharge rate decrease)
Socket for hex key: 5
Hexagonal flat lock nut: 17

Power-match control valve

Solenoid
(KSO-G02-2B-××-C)
Dual pressure control valve

Vent port Rc¼

Drain port Rc½

Low pressure adjusting screw (P_l)
Socket for hex key: 6.5
Hexagonal flat lock nut: 27

High-pressure PC differential pressure adjusting screw (P_h)
(factory adjusted)

Oil filler port for the pump case

Mass: 31.3 kg

V38SA×RX-95

Load pressure port
¾-20UNF-2B O-ring boss
(with UNF-Rc¼ (male) conversion nipple)

Power-match control valve

Suction port G1¼
O-ring boss

Discharge port G1¼
O-ring boss

Discharge rate adjusting screw
(clockwise: discharge rate decrease)
Socket for hex key: 5
Hexagonal flat lock nut: 17

Differential pressure setting adjusting screw (PC valve)
Socket for hex key: 6.5
Hexagonal flat lock nut: 27

Oil filler port for the pump case

Mass: 28 kg

V38SA×R-95

Load pressure port
¾-20UNF-2B O-ring boss
(with UNF-Rc¼ (male) conversion nipple)

Power-match control valve

Suction port G1¼
O-ring boss

Discharge port G1¼
O-ring boss

Discharge rate adjusting screw
(clockwise: discharge rate decrease)
Socket for hex key: 5
Hexagonal flat lock nut: 17

Differential pressure setting adjusting screw (PC valve)
Socket for hex key: 6.5
Hexagonal flat lock nut: 27

Oil filler port for the pump case

Mass: 25.1 kg
Before using the product, please check the guide pages at the front of this catalog.

http://www.daikinpmc.com/en/
For latest information, PDF catalogs and operation manuals

External dimension diagram

V38SAJS-RX-95

- Load pressure port Rc1/2
- Drain port Rc1/2
- Oil filler port for the pump case
- Drain port Rc1/8
- JRP drain port Rc1/8
- FC differential pressure adjusting screw
- Socket for hex key: 6.5
- Hexagonal flat lock nut: 27
- PC differential pressure adjusting screw (factory adjusted)
- Surge absorbing valve
- port Rc1/4
- Suction port G1/4
- O-ring boss
- Safety valve
- Discharge rate adjusting screw
- Discharge port G1/4
- O-ring boss

Mass: 32 kg
External dimension diagram

V50A×RX-20

Discharge rate adjusting screw
(clockwise: discharge rate decrease)
Socket for hex key: 6
Hexagonal flat lock nut: 19

Discharge port
(1½ split flange boss
(SAE J518))

Effective thread depth 20
(at 4 positions on both sides)

Pressure adjusting screw
(clockwise: pressure increase)
Socket for hex key: 8
Hexagonal flat lock nut: 32

Oil filler port for the pump case

Drain port Rc¼

V50A×RX-20RC

Vent port
½-20UNF-2B O-ring boss
(with UNF-Rc¼ (male) conversion nipple)

Discharge rate adjusting screw
(clockwise: discharge rate decrease)
Socket for hex key: 6
Hexagonal flat lock nut: 19

PC differential pressure adjusting screw
(factory adjusted)

Drain port Rc¼

Oil filler port for the pump case

Power-match control valve

Discharge port
(1½ split flange boss
(SAE J518))

Effective thread depth 20
(at 4 positions on both sides)

V50SA×RX-20

Load pressure port
½-20UNF-2B O-ring boss
(with UNF-Rc¼ (male) conversion nipple)

Discharge rate adjusting screw
(clockwise: discharge rate decrease)
Socket for hex key: 6
Hexagonal flat lock nut: 19

Differential pressure setting adjusting screw (PC valve)
Socket for hex key: 6.5
Hexagonal flat lock nut: 27

Maximum pressure adjusting screw (PC valve)
Socket for hex key: 6.5
Hexagonal flat lock nut: 27

Drain port Rc¼

Oil filler port for the pump case

Differential pressure setting adjusting screw (FC valve)
Socket for hex key: 6.5
Hexagonal flat lock nut: 27

Mass: 50 kg

Mass: 52.1 kg

Mass: 53.5 kg
Contact Details
Before using the product, please check the guide pages at the front of this catalog.

http://www.daikinpmc.com/en/
For latest information, PDF catalogs and operation manuals

External dimension diagram

V50SAJS-×RX-20

Flange dimensions
(at two positions)

Electromagnetic proportional pressure valve wiring port
JRP-G02-×23

Surge absorbing valve
vent port Rc¾

Load pressure port Rc¾

Safety valve

Drain port Rc¾

Effective thread depth 20

M12P1.75

PC differential pressure adjusting screw (factory adjusted)

FC differential pressure adjusting screw
Socket for hex key: 8
Hexagonal flat lock nut: 32

View B-B

Suction port
1½ split flange boss
(SAE J518)

Discharge port
1½ split flange boss
(SAE J518)

Refer to flange dimensions.

Mass: 69 kg
External dimension diagram

V70SA××RX-60

Load pressure port
¾-20UNF-2B O-ring boss
(with UNF-Rc¾ (male) conversion nipple)

Discharge rate adjusting screw
(clockwise: discharge rate decrease)
Socket for hex key: 6
Hexagonal flat lock nut: 19

Power-match control valve

Suction port
1½ split flange boss
(SAE J518)

Discharge port
1½ split flange boss
(SAE J518)

M12 P1.75
Effective thread depth 20

φ 40
Effective thread depth 20

Discharge rate adjusting screw (PC valve)
Socket for hex key: 8
Hexagonal flat lock nut: 32

Differential pressure setting
adjusting screw (FC valve)
Socket for hex key: 8
Hexagonal flat lock nut: 32

Maximum pressure
adjusting screw (PC valve)
Socket for hex key: 8
Hexagonal flat lock nut: 32

Drain port Rc¾
Oil filler port for the pump case

Mass: 58.5 kg

V70SAJS-×RX-60

Flange dimensions
(at two positions)

Load pressure port
Rc¾

Safety valve

Surge absorbing valve port
Rc¾

Discharge port

Refer to flange dimensions.
1½ split flange boss
(SAE J518)

PC differential pressure adjusting screw
(factory adjusted)

FC differential pressure adjusting screw
Socket for hex key: 8
Hexagonal flat lock nut: 32

Mass: 68 kg

Mass: 58.5 kg
Sectional structural diagram

V8, V15

V8 Seal/bearing table

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Name</th>
<th>Specifications</th>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Oil seal</td>
<td>TCV19356</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Sealing washer</td>
<td>WF12192</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Ball bearing</td>
<td>6004</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>O-ring</td>
<td>JIS B 2401 1A-P4</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>Needle bearing</td>
<td>HK1210</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>Gasket</td>
<td>1730500 (special part)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>O-ring</td>
<td>JIS B 2401 1A-P20</td>
<td>NBR</td>
<td>2</td>
</tr>
<tr>
<td>37</td>
<td>Gasket</td>
<td>1741116 (special part)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>O-ring</td>
<td>JIS B 2401 1B-P14</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>47</td>
<td>O-ring</td>
<td>AS568-903 (HS90)</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>49</td>
<td>O-ring</td>
<td>JIS B 2401 1B-P6</td>
<td>NBR</td>
<td>1</td>
</tr>
</tbody>
</table>

V15 Seal/bearing table

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Name</th>
<th>Specifications</th>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Oil seal</td>
<td>TCV24408</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Sealing washer</td>
<td>WF12192</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Ball bearing</td>
<td>6305</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>O-ring</td>
<td>JIS B 2401 1A-P8</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>Needle bearing</td>
<td>FJL1715</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>Gasket</td>
<td>1730390 (special part)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>O-ring</td>
<td>JIS B 2401 1A-P18</td>
<td>NBR</td>
<td>2</td>
</tr>
<tr>
<td>37</td>
<td>Gasket</td>
<td>1740698 (special part)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>O-ring</td>
<td>JIS B 2401 1B-P14</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>47</td>
<td>O-ring</td>
<td>AS568-903 (HS90)</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>49</td>
<td>O-ring</td>
<td>JIS B 2401 1B-P6</td>
<td>NBR</td>
<td>1</td>
</tr>
</tbody>
</table>
Before using the product, please check the guide pages at the front of this catalog.

http://www.daikinpmc.com/en/
For latest information, PDF catalogs and operation manuals

Sectional structural diagram

V23, V38

V23 Seal/bearing table

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Name</th>
<th>Specifications</th>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Oil seal</td>
<td>TCV24408</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Sealing washer</td>
<td>WF12192</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Tapered roller bearing</td>
<td>Cup: 4T-L44610/ Cone: 4T-L44643</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>O-ring</td>
<td>JIS B 2401 1A-P8</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>Tapered roller bearing</td>
<td>Cup: 4T- LM11710/ Cone: 4T- LM11749</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Gasket</td>
<td>1730511 (special part)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>O-ring</td>
<td>JIS B 2401 1A-G30</td>
<td>NBR</td>
<td>2</td>
</tr>
<tr>
<td>38</td>
<td>Gasket</td>
<td>1740698 (special part)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>O-ring</td>
<td>JIS B 2401 1B-P14</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>46</td>
<td>O-ring</td>
<td>AS568-903 (HS90)</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>48</td>
<td>O-ring</td>
<td>JIS B 2401 1B-P6</td>
<td>NBR</td>
<td>1</td>
</tr>
</tbody>
</table>

V38 Seal/bearing table

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Name</th>
<th>Specifications</th>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Oil seal</td>
<td>TCV24408</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Sealing washer</td>
<td>WF12192</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Tapered roller bearing</td>
<td>Cup: 4T-L44610/ Cone: 4T-L44643</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>O-ring</td>
<td>JIS B 2401 1A-P8</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>Tapered roller bearing</td>
<td>Cup: 4T- LM11910/ Cone: 4T- LM11949</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Gasket</td>
<td>1730500 (special part)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>O-ring</td>
<td>JIS B 2401 1A-G30</td>
<td>NBR</td>
<td>2</td>
</tr>
<tr>
<td>38</td>
<td>Gasket</td>
<td>1740698 (special part)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>O-ring</td>
<td>JIS B 2401 1B-P14</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>46</td>
<td>O-ring</td>
<td>AS568-903 (HS90)</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>48</td>
<td>O-ring</td>
<td>JIS B 2401 1B-P6</td>
<td>NBR</td>
<td>1</td>
</tr>
</tbody>
</table>
Contact Details
Before using the product, please check the guide pages at the front of this catalog.

http://www.daikinpmc.com/en/
For latest information, PDF catalogs and operation manuals

Sectional structural diagram

V50, V70

V50 Seal/bearing table

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Name</th>
<th>Specifications</th>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Sealing washer</td>
<td>WF12192</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>Gasket</td>
<td>1020257 (special part)</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>O-ring</td>
<td>JIS B 2401 1A-G50</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>O-ring</td>
<td>JIS B 2401 1A-P12</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>Tapered roller bearing Cup: 21212 Sa</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Tapered roller bearing Cone: 21075 Sa</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Tapered roller bearing Cone: 4T-344A P × 2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Tapered roller bearing Cup: 4T-332 P × 2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Oil seal</td>
<td>TCV355511</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>O-ring</td>
<td>AS568-228 (HS70)</td>
<td>NBR</td>
<td>2</td>
</tr>
<tr>
<td>59</td>
<td>O-ring</td>
<td>AS568-903 (HS90)</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>65</td>
<td>O-ring</td>
<td>JIS B 2401 1A-P18</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>68</td>
<td>O-ring</td>
<td>JIS B 2401 1B-P6</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>71</td>
<td>Gasket</td>
<td>1740975 (special part)</td>
<td>NBR</td>
<td>1</td>
</tr>
</tbody>
</table>

V70 Seal/bearing table

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Name</th>
<th>Specifications</th>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Sealing washer</td>
<td>WF12192</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>Gasket</td>
<td>1730446 (special part)</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>O-ring</td>
<td>JIS B 2401 1A-G50</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>O-ring</td>
<td>JIS B 2401 1A-P12</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>Tapered roller bearing Cup: 4T-M84210</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Tapered roller bearing Cone: 4T-M84249</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Tapered roller bearing Cone: 4T-3386</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Tapered roller bearing Cup: 4T-3320</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Oil seal</td>
<td>TCV355511</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>O-ring</td>
<td>AS568-230 (HS70)</td>
<td>NBR</td>
<td>2</td>
</tr>
<tr>
<td>59</td>
<td>O-ring</td>
<td>AS568-903 (HS90)</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>65</td>
<td>O-ring</td>
<td>JIS B 2401 1A-P18</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>68</td>
<td>O-ring</td>
<td>JIS B 2401 1B-P6</td>
<td>NBR</td>
<td>1</td>
</tr>
<tr>
<td>71</td>
<td>Gasket</td>
<td>1740975 (special part)</td>
<td>NBR</td>
<td>1</td>
</tr>
</tbody>
</table>